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1 Interoperability and ACETEF 
 
The Air Combat Environment Test & Evaluation Facility (ACETEF) is a major 
component of the Naval Air Systems Command (NAVAIR) Integrated Battlespace 
Simulation and Test (IBST) Department. The IBST Department is a collection of 
geographically distributed yet integrated test facilities and many diverse activities all 
designed to provide effective, affordable and repeatable test & evaluation (T&E) 
capabilities for a variety of naval aircraft, weapon systems, and other platforms. IBST 
includes facilities in both the Naval Air Warfare Center Weapons Division (NAWCWD) 
and the Naval Air Warfare Center Aircraft Division (NAWCAD).  Major Installed 
Systems Test Facilities (ISTFs) within NAWCWD include the Radar Reflectivity 
Laboratory (RRL) in Pt. Mugu, CA, as well as the Integrated Battlespace Arena (IBAR) 
and the Missile Engagement Simulation Arena (MESA) in China Lake, CA.  Major test 
facilities within NAWCAD include the Surface/Aviation Interoperability Laboratory 
(SAIL), the Manned Flight Simulator (MFS), and the Air Combat Environment Test & 
Evaluation Facility (ACETEF) at Patuxent River, MD.  Other activities within IBST 
include Electromagnetic Environmental Effects (E3) facilities, NAVAIR High 
Performance Computing (HPC) Centers, and the NAVAIR Research, Development, Test, 
and Evaluation (RDT&E) network domain [YM07].  
 
The ACETEF concept reaches back to the 1970’s with the convergence of the F/A-18 
Hornet, the AV-8B Harrier, and the SH-60B Sea Hawk programs at the Naval Air Test 
Center, as it was then known. The first operations paradigm was “Fly-Analyze-Fix.” By 
the early 1990’s this operations paradigm had shifted to “Simulate-Stimulate-Analyze & 
Fix-Fly” [OCD97]. A key enabler in this paradigm is simulation, which is the “goal-
directed experimentation with dynamic models, i.e., models with time-dependent 
behavior” [Ore02]. ACETEF extends the simulation concept to encompass a “coherent 
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environment” in which other dynamic functional components ranging from man-and 
equipment-in-the-loop to simulation and stimulation assets can be “immersed” and 
interact. In this integrated environment of immersed dynamic systems, emergent effects 
can be observed and analyzed so that the whole of ACTEF can actually be greater than 
the sum of its parts. At a physical level, ACETEF is a collection of laboratories and 
facilities that includes two anechoic chambers (the Advanced System Integration 
Laboratory (ASIL) and the smaller Aircraft Anechoic Test Facility (AATF)), the Warfare 
Simulation Lab, the Threat Air Defense Lab (TADL), the Communication, Navigation, 
and Identification (CNI) lab, the Electronic Warfare Integrated Systems Test Laboratory 
(EWISTL), and the Electro Optic Infrared (EOIR) Laboratory. While these laboratories 
maintain their ability to operate independently, at the deeper logical level their specific 
shared interoperable architecture facilitates integration in a tightly-coupled real-time 
manner.  The Manned Flight Simulator (MFS) is also able to interact with ACETEF in 
this real-time, integrated operational mode.  
 
Since ACETEF’s inception, the evolution of modern warfighting doctrine has put 
increasing operational importance and even dependence on complex interactions. The 
emergent effects that were side-effects in the past are rapidly becoming the mainstays of 
“edge entities,” capable of conducting highly responsive military missions [Alb03]. The 
ACETEF concept in supporting such highly complex integrated T & E activities is more 
relevant today than ever. At the heart of the ACTEF concept is a particular form of 
interoperability that engenders coherency of interactions, consistency of data modeling 
and synchronization of distributed actions. Whereas IEEE defines interoperability 
broadly as “the ability of two or more systems or components to exchange information 
and to use the information that has been exchanged” [IEEE90], ACETEF’s 
interoperability is based on concurrency.  Concurrency is a property of systems in which 
several computational processes are executing at the same time, and interacting with each 
other [ROS97]. 
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Figure 1 – ACETEF Functional Basis. 
 
The ACETEF functional basis as depicted in Figure 1, provides the motivational 
backdrop for the ensuing discussion regarding shared memory and alternatives from the 
perspective of leveraging different concurrency models.  
 
 
2 Concurrency – A closer Look 
 
Concurrency is one of those quintessential challenges of interoperation with respect to 
information processing systems. Concurrency applies to all levels of interaction within a 
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computing environment from hardware and the operating system to the functional 
applications, which is the level of interest with respect to ACETEF interoperability. 
 
For simplicity sake, application concurrency can be taken as the execution of multiple 
interacting computational tasks implemented as separate processes. The functional 
perspective of application-level concurrency involves the implementation of a 
concurrency model that includes an inter-process communication (IPC) method with a 
coherence protocol, a data consistency model and a synchronization mechanism. 
 

Application 2
fn1(x)

Application 3
fn2(x)

Application 1
x
fn3(fn1(x), fn2(x))

Inter-Process Communication

Coherence Protocol

Data Consistency Model

Synchronization Mechanism

 
 
Figure 2 – Motivating the challenge of application concurrency - application1 provides the seed value 
x for fn1 and fn2 that can be executed more-or-less in parallel in applications 2 and 3 respectively. 
Application 1 relies on these functional results as the arguments of its own function. 
 
The simple situation depicted in Figure 2 already illustrates the need for some degree of 
coherence, consistency and synchronization at the level of the concurrent applications’ 
interacting functions. There must also be an understanding atomicity across the 
applications, namely those actions that are indivisible, because the concurrency model 
must address these core issues at the appropriate atomic level.  From the ACETEF 
perspective, atomicity can become a highly complex issue on its own merit. The 
individual models behind the simulations and stimulators as well as the dynamic 
interactions with human interfaces and instrumentation can exist at different levels of 
detail. The individual levels of detail are related in the sense of physical causality, such 
that patterns of conjoined or sequential events at one level will reflect events at a higher 
level of abstraction. In a practical sense, if the functional components do not share a 
common level of detail, then the atomic abstraction will impact the coherence, 
consistency and synchronization details of the concurrency model. 
 
Concurrency is more than just a data protocol. Data-level protocols like Distributed 
Interactive Simulation (DIS) put the primary focus on the data formatting and passing 
aspect of sharing and not the concurrent interaction of processes actually sharing the 
information. This provides a lowest-common-denominator basis for data consistency, but 
does little with respect to coherence and synchronization. By contrast the High Level 
Architecture (HLA) protocol facilitates data sharing along the lines of a Federate Object 
Model (FOM), which enables data sharing within a commonly agreed upon data-context. 
This higher-level data consistency model adds some coherence and synchronization 
potential.  The Test and Training Enabling Architecture (TENA), which is based on the 
Common Object Request Broker Architecture  (CORBA) concept, goes beyond the mere 
data passing aspect to include the methods and marshalling instructions necessary for 
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concurrently mediating process interactions involving the data at a functional level. These 
three common modeling and simulation (M&S) data protocols represent vastly different 
forms of interoperability from a concurrency point of view. 
 
Concurrency is also more than just the choice of IPC. Although IPC methods come in 
many different technical and OS-specific forms, in an abstract application functional 
sense it boils down to a “sharing” of something such as a file,  a block in memory, a 
connection for passing messages, or an environment for passing signals or control 
instructions. Consequently, two classes of explicit inter-process communications can be 
readily identified. On one hand, there is the file and memory sharing, which typically 
involves some kind of locking-based protocol as in the shared-memory concurrency 
model. On the other hand, passing messages, signals and instructions through a shared 
connection or environment typically involves some kind of process calculi or actor 
concurrency model. In thread discussions, these two classes are often succinctly 
described as “variable sharing” or “message passing.” 
 
In its original form, shared memory was both an efficient IPC method and a concurrency 
model. As an IPC method, once the memory is mapped into the address space of the 
process sharing the memory region, memory management functions aside, the data is 
efficiently passed between processes without executing data calls through the kernel. 
Today, the use of shared memory as an IPC may be disguised under many different 
application programming interfaces (API), but most modern implementations on 
Windows, UNIX and Linux platforms actually employ some kind of file memory 
mapping as the actual explicit inter-communication mechanism. As a concurrency model, 
shared memory involves a straightforward coherence protocol of the form: locking 
memory; manipulating shared memory followed by freeing memory. Consistency and 
synchronization are then maintained by simply imposing basic rules governing the 
requesting and order of shared memory accesses by the individual processes. While the 
details of the coherence protocol and consistency model change with memory mapped 
files, the basic “locking” effect at the shared variable level is still preserved behind the 
API, so that the coherence model is essentially the same in outward appearance. 
 
While the shared memory concurrency model is simple and in many respects elegant to 
the point of being virtually transparent to the user, this also speaks to the level of 
atomicity involved. For example, if two applications have functionally identical 
variables, then those variables can be efficiently “shared” through the shared memory 
concurrency model quite effectively. Now consider the danger in shared memory if a 
process crashes while manipulating the “critical region” of memory, or if it locks too 
frequently. In the case of fine-grain sharing, consider the effect of a “deadlock” where 
two processes hold “hostage” the portion of memory that each other is waiting for. Such 
low-level “exceptions” might actually be easily resolvable at a higher task-level of 
understanding. Unfortunately, at the atomicity of the concurrency model employed, these 
situations may be inherently ambiguous. If the atomicity of the process interaction is at a 
higher functional level so as to include data structures, control methods and even program 
objects, then the intrinsic support of a more complex concurrency model may be 
required. 
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Message passing IPCs fundamentally offer greater flexibility for supporting a broader 
class of concurrency models at both the variable-level and beyond. Furthermore, message 
passing IPCs provide an important basis for extending the concept of concurrency across 
processes running on multiple and possibly disparate compute platforms as in a 
networked environment. The proliferation of high-bandwidth standards-based networks 
combined with easy-to-program abstractions such as sockets, makes the message passing 
paradigm in distributed systems generally appealing, but we must keep in mind the fact 
that concurrency is more than the IPC chosen as the means of implementation. 
 
As a point in case, consider Distributed Shared Memory (DSM). DSM implemented at 
the operating system level can be thought of as extensions of the underlying virtual 
memory architecture and as such is completely transparent to the applications, but is also 
particular to a small family of operating systems and generally require that all compute 
platforms be running the same OS across a specific network backbone. If the OS does not 
support DSM natively, which most do not, then the distributed shared memory concept 
must be created by (1) preserving locally the shared memory look and feel (i.e. 
appropriate API “disguise”) and (2) enforcing globally the shared memory concurrency 
model. This is typically achieved by using some form of a message passing IPC. As a 
notional DSM implementation, consider a local process that would normally interact with 
another local process through shared memory. The process now interacts through local 
shared memory with a proxy that is the DSM local client. The DSM clients share a 
message-passing connection at the core of their infrastructure. The IPC implementation in 
this case supports a process algebra that extends the local shared memory concurrency 
model to the other clients (e.g. locking one; locks all) as well as mediates and 
synchronizes the data manipulations across the clients for a net reflective data effect. 
Whether the DSM implementation is software based using standard networking hardware 
and protocols like TCP/IP, or employs proprietary hardware and firmware to offload the 
process-algebra and communications processing, the effect of a shared memory 
concurrency model remains. 
 
While shared memory represents the low-end of the concurrency model spectrum of 
complexity, the Common Object Request Broker Architecture (CORBA) concept 
represents a considerably higher degree of supportable concurrency complexity. 
Fundamentally based on a message passing paradigm across standard computer networks, 
CORBA is a formal standard defined by the Object Management Group (OMG) for 
enabling software components written in various computer languages and running on 
multiple computers to operate concurrently. CORBA capitalizes on the object oriented 
(OO) nature of most modern languages and their use of objects in order to enable 
interaction through the sharing of objects. Objects embody not only the data but also the 
encapsulation of methods for manipulating the data in a functionally consistent context. 
In particular, CORBA uses an interface definition language (IDL) to define the objects 
and services in a language-independent manner. When compiled using the IDL, a client 
side stub-code, and a server side skeleton-code are created (Figure 3).  
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Figure 3 – The CORBA concept supports by design concurrency as well as interoperability. 
 
When a client makes a call to a remote object, the stub provides the interface or proxy to 
the remote object along with the marshalling instructions for the client’s object resource 
broker (ORB). The skeleton provides the server’s ORB with the means to interpret the 
client’s method and the un-marshalling instructions. On return response from the remote 
object, the roles are essentially reversed. Application level concurrency lies in the 
particular methods and marshalling instructions, which can be designed around various 
concurrency models. CORBA’s growth as a concurrent programming middleware from 
the mid 1990’s on was marked by sometimes even more rapid development and 
commercial acceptance of JAVA and Enterprise Java Beans (EJB). For the purpose of 
discussion this it is worth noting that even in 2007 these approaches continue to compete 
so that the only clear point may be simply that the final chapter of the quest for such 
high-end flexible, language and platform independent concurrent middleware is yet to be 
written. 
 
 
3 Concurrency Evolution at ACETEF 
 
In the early 1990’s when ACETEF was architecting its integrated, concurrent operating 
capabilities, comparatively slow processors, low bandwidths and severely limited 
dynamic memory narrowed the concurrent processing options to shared memory, both 
locally and distributed using proprietary hardware. Using the simulation concept for the 
concurrent environment basis, the ACETEF architects took a warfare model of the same 
family as the TAC Suppressor and made some specific, yet very profound alterations. 
The model’s game engine was based on a semantic network. Such engines work on the 
principle that any event, like the movement of a game entity, changes certain parts of the 
network and triggers a predicate logic traversal of the network to determine the response 
of the entity and all other entities, which in turn gets reflected back in the network in 
preparation for the next event. The significance of this kind of logic-engine architecture is 
that if certain parts of the semantic network were made externally accessible, then the 
behaviors in addition to the triggering events could be driven externally. ACETEF’s key 
alteration of the model was in fact to make parts of the network externally accessible 
through a shared memory interface as well as add simulation control and contingency 
behaviors [Lat95]. By providing for its own memory management through the model’s 
control, the interface could serve as a coordination protocol for the functionally organized 
memory blocks. This interface-protocol became known as Simulated Warfare 
Environment Data Transfer (SWEDAT). Certain SWEDAT shared memory blocks 
correspond to entity position and orientation (both actual and perceived), emissions, 
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scenario configuration data, timing and coordination. Other blocks, however, correspond 
to low-level model-specific mailboxes where battlespace interactions with entities as well 
as entity behaviors can be shared. In this way, data can be shared at the “variable-
sharing” level within a shared memory concurrency model, while actual interactions take 
place within the model at higher battlespace-relevant levels of atomicity with the effects 
reflected back to the lower SWEDAT level. The net effect is a stimulus-decision-
response (SDR) interaction between entities within the model and their outside world 
counterparts (Figure 4).  

 
Figure 4 – The shared memory based SWEDAT interaction paradigm allows the model to act as a 
virtual world and mediate a stimulus-decision-response concurrent connection between external 
devices and their virtual counterparts. 
 
This creates a profound concurrent computing capability by enabling the model to 
function as a kind of “virtual world hosting entities” whose behaviors could be 
concurrently driven by external devices such as models, stimulators and man-machine 
interfaces. Since each external entity within this construct “sees” the “reflection” of the 
entity in the virtual world, including each other’s effects without explicitly “knowing” 
about each other, a highly effective agent-based integration paradigm for concurrently 
operating external devices is achieved. While the low level “variable-sharing” data 
atomicity through SWEDAT can demand considerable effort with a steep learning curve 
for creating, debugging, operating and maintaining external interfaces, the effective SDR 
interaction addresses concurrency at the higher-level of battlespace interactions, which 
defines the atomicity of the overall concurrency model in effect.  
 
The SWEDAT protocol continues to be very important for ACETEF integrated 
operations, and it is still based on shared memory (including DSM). The descendant of 
the originally modified model, known today as the Joint Integrated Mission Model 
(JIMM), continues to control those blocks of the shared memory that are specific to 
external, concurrent control [Lat07]. In the post “AI Winter,” as some have called it, it is 
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ironic to see the number of new agent-based and semantic network driven model 
concepts arising today, while the agent-based roots of successful models like JIMM have 
been virtually forgotten [LS07] In addition to supporting real-time integrated exercises 
involving direct stimulation of aircraft systems under test with emitted energy, SWEDAT 
can also link ACETEF into distributed exercises via interfaces using DIS, HLA, the 
TENA, and other methods (Figure 5).  Furthermore, these methods can also operate 
simultaneously with each other or with laboratory interfaces as required.  Multiple copies 
of JIMM can also operate directly through SWEDAT [Mut05].  In addition, this allows 
simulators such as the Joint Semi-Automated Forces (JSAF) simulator or the Enhanced 
Air Defense Simulator (EADSIM) to provide all or part of the threat environment during 
exercises [IBST07]. 
 

MFSRRL
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JIMM

SWEDATMESA
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Other
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Figure 5 – Notional Integrated Exercise with Distributed Sites 
 
Over the past few years, components of an interface library have evolved using an object-
oriented construction to extend interactions beyond SWEDAT [MA06]. In this approach, 
methods employed to access SWEDAT data are kept in a derived class.  However, actual 
SWEDAT interaction is maintained in a base class.  Since much of the SWEDAT data 
does correspond to information found in protocols like DIS, HLA and TENA, this library 
can be extended to handle other protocols through a plug-in architecture that continues to 
evolve as depicted in Figure 6.  
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Figure 6 – Current state of the ACETEF architecture 
 
The data interchange structure and management control still relies on SWEDAT under 
JIMM control. Two proposals have been submitted to fully separate SWEDAT control 
from JIMM [Mut03], [Mut04a]. While this would take SWEDAT and the shared memory 
management out of the JIMM model, the net effective SDR concurrency paradigm 
provided by using JIMM as a kind of virtual world would no longer be intrinsic. This 
means that data is being interchanged in the runtime environment, but the true 
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concurrency burden, i.e. coherency, consistency and synchronization, gets left largely to 
the assumed concurrent operating capabilities of the interconnected components. 
 
The SWEDAT and interface library are predicated locally on a shared memory data 
model so that the current implementation relies heavily on a costly distributed reflective 
shared memory architecture involving proprietary hardware, drivers and infrastructure. 
Several efforts have been undertaken to replace the DSM with message passing protocols 
across stands-based networks [Bal05a], [Mut04b], [Jon05], but these do not change the 
fundamental shared-memory architecture at the core of SWEDAT itself. For example, the 
Shared Memory Interface Likability Engineering (SMILE) effort involved fundamental 
changes to both JIMM and SWEDAT in order to replace the DSM with message-passing. 
As a JIMM modification, this effort promoted automatic conversion of indices (given 
data offsets) referencing SWEDAT data to pointers and pertinent automatic conversion of 
“endian” data (Figure 7). From the SWEDAT perspective, this effort promoted the 
transfer of data over a standard network via an object request broker. 
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Figure 7 – Notional Exercise using JIMM and SMILE with Manned Flight and the IR stimulator. 
 
The initial prototype that was built on IBM PCs and Linux was successful and as efficient 
as the legacy implementation [Bal05a].  Despite this success, the prototype 
implementation did not interoperate on all officially JIMM supported computer platforms 
and posed certain technical compatibility issues that kept it from being incorporated in 
the current JIMM distribution [Bal05b]. A similar effort funded by the Northrop 
Grumman Corporation (NGC) focused on employing SWEDAT via the Message Passing 
Interface (MPI) [Jon05].  MPI is a language-independent communications protocol 
common in parallel computing for interoperating between processes distributed over a 
network. The implementation was successful, though it was shown to have some time 
lags when compared against direct shared memory. Both of these efforts essentially 
extend the existing shared memory by adding a message passing protocol. 
 
There is, however, a proposal for actually replacing the current shared memory protocol 
with a message-passing protocol. Between JIMM’s semantic network known as the 
general array and the current shared memory implementation of SWEDAT is an internal 
dispatch system that coordinates instructions for changing array items and the sentence-
like responses of the predicate logic coming from the model. Consequently, the 
dispatches currently employed within SWEDAT as well as common updates such as 
position and orientation of platforms could be encapsulated as messages and sent over a 
network directly and thus replace the SWEDAT protocol with a native message passing 
implementation. Furthermore, the implementation in JIMM could leverage JIMM’s 
multi-threaded architecture [Mut04b]. Unfortunately, this has only been proposed and not 
actually implemented, although recent work to improve accuracy of position and 
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orientation for interfaced systems and reduce network traffic [Mut07] could facilitate this 
effort. 
 
 
4 An Alternative Perspective 
 
An alternative approach is not simply a shared memory replacement addressing ACETEF 
data interchange, because it must address the end-to-end concurrency of physical 
battlespace interactions, i.e. the net effect of the shared memory SWEDAT with the 
JIMM virtual world notion as previously discussed. 

 
Figure 8 – The road to an alternative perspective. The concurrent environment is reflected in a 
concurrent physical representation and a concurrent nomological interpretation for dynamic systems 
representing a “real world.” 
 
Consider that the ACETEF “real world” consists of dynamic systems of different types 
that must concurrently interoperate, as in Figure 8. The concurrent environment is 
marked by coherence of interaction, data consistency and event synchronicity. 
Individually, each dynamic system could be viewed as being part of a larger concurrent 
physical representation. The physical intersect will have physical entities within a 
physical environment that are both definable by various static and dynamic properties. 
The entities exist in space and thus have physical location as a common (often dynamic) 
property. The temporal-bounded interactions of entities with each other and with their 
local environment will be reflected in the time-evolution of the affected dynamic 
properties. The level of detail of the dynamic systems will typically differ as each 
provides its own functionally-oriented perspective of the physical representation. These 
differing levels of detail are not independent, but rather are abstractions of one another 
with respect to underlying cause and effect relations, i.e. physical laws. Within the 
context of time and space, this nomological relatedness manifests itself in anticipatory 
patterns of conjoined and sequenced events so that a plausible inference exists for 
concurrently interpreting features in the physical representation between levels of 
abstraction [Hum55]. This concurrent nomological interpretation in conjunction with the 
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concurrent physical representation provides a basis for mediating concurrency between 
the dynamic systems through a common physical intersect. 
 
A first opportunity to explore this concept presented itself in a 2005 project sponsored to 
take a given tactical situation and compare the effects of employing two different 
communications paradigms across certain mission profiles. The comparison reduced to 
two salient, operationally significant questions: (1) Does the “to-be” communications 
paradigm shorten the kill chain as compared to the “as-is” paradigm? (2) Does the “to-
be” communications paradigm improve the Common Operational Tactical Picture 
(COTP) over that of the “as-is” paradigm? The desire was to “see” the data products as 
runtime visualizations of the kill-chain formation (logical graphs) and the tactical picture 
degree of commonality (statistical charts).  

 
Figure 9 – Distributed agents concurrently sharing data services centered on a nomological data 
schema. 
 
The challenge was to concurrently capture data from multiple sources; analytically 
processes the data for different causal features in parallel and map select identified 
features to multiple visual presentations on-the-fly. As shown in Figure 9, a concurrent 
TCP/IP based runtime environment centered on shared data services and a physical, 
nomological data schema was created along with agents for data capture, feature 
abstraction, and feature visualization. In this case, JIMM simulations were used to model 
the “as-is” and “to-be” situations. Consequently, two capture agents were employed to 
map both a priori scenario data and runtime event data into the data and metadata 
structure of the nomological schema for the synchronized simulations. The one side of 
the capture agent is necessarily specific to the data source, while the other side largely 
depends on the more generalized nomological data structure services. The physical 
features relevant for assessing kill-chain and COTP are at a higher level of abstraction. A 
generalized, model-driven causality correlation core was constructed so that identical 
feature abstraction agents could be deployed with different causality patterns. 
Consequently, two agents were used in this case, one for abstracting kill-chain related 
features and one for abstracting COTP-related features. The mode of data visualization 
determines the data structure, e.g. a scengraph for scene rendering, tables for chart data, 
and node-edge graphs for logical data representations. In this case, two agents 
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corresponding to chart presentation and logical graph presentation were created. While 
the one side of each agent facilitated selecting features for presentation and mapping the 
features from the nomological structure to the particular data visualization structure, the 
other side of the agent mediated the data passing to a particular rendering library. 
 
Drawing on the success of this initial effort [LB06], an even more generalized, higher 
performance system for integrated analytical purposes is currently under development. 
This current effort involves several noteworthy architectural features. First, a very 
flexible and efficient concurrent environment is created using the Tool Command 
Language (Tcl). Tcl is a growing language that was born in the early 1990’s as a 
functional programming extension to the declarative C/C++ programming language. In 
functional programming languages one describes what to do in an imperative 
environment as opposed to how to do it in a declarative environment.  Like its more 
famous functional programming ancestor LISP, Tcl is list-centric. In fact, Tcl has highly 
evolved lists, array and string processing capabilities including regular expressions and 
substitutions. Intended as an extension of C, these core capabilities are highly optimized 
for near byte-code level efficiencies. Furthermore, Tcl is remarkably platform-
independent and can be either natively embedded within a C application or run 
independently with the ability to call linked libraries. Automatic memory management 
and a lack of pointers make Tcl very robust and highly compatible when embedded. 
 
The Remote Procedure Call (RPC) script is a mere few-dozen lines of optimized code 
that allows command strings to be executed on a remote interpreter with the completion 
code and result being returned locally in the same way as if the command string had been 
executed locally (Figure 10). 

eval {cmdstring…}
» <code> <result>

client server

server:eval {cmdstring…} 

» <code> <result>

eval {cmdstring…}

eval {cmdstring…}
» <code> <result>

client:eval {cmdstring…} 

» <code> <result>

eval {cmdstring…}

TCP/IP Connection  
 
Figure 10 – Remote Procedure Call (RPC) service running on Tcl interpreters across TCP/IP 
provides an efficient basis for higher-order concurrent processing services. 
 
A second architectural feature is the use of a modern In-Memory Database System 
(IMDS). The IMDS is the general-purpose descendant of the embedded database that 
take advantage of the large memory and very fast CPUs of today’s computing platforms. 
In most respects, IMDS operate like embedded databases in that they are typically an 
integral part of the application they serve so that the database code is executed only when 
invoked by the application. The database’s code may be in-line with the application code 
or called through linked libraries. In particular the Metakit database is currently being 
explored because it can be natively embedded in both C code and Tcl interpreters. In fact, 
the Tclkit release of Tcl uses Metakit internally as the real-time virtual file system. The 
Metakit database also employs a reduced, yet highly efficient instructional set that avoids 
the overhead of a full query language while still maintaining the necessary data 
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consistency and flexibility of searching, sorting and selecting expected of a database 
engine. Unlike traditional databases that operate through transactions to the database file, 
usually through some caching mechanism that is all part in parcel of its data consistency 
model, the IMDS operates on a more direct data-in-memory model. Consequently, it 
typically requires fewer, simpler processes by eliminating or greatly simplifying the 
concepts of caching, data transfer, transaction processing, synchronization and rollback 
without loss of consistency. Furthermore, instead of a transaction-oriented data file, a 
Metakit repository can operate purely in-memory or be linked to file that is a more direct 
reflection of the data-in-memory, which makes operations like commits and loads 
tremendously fast and efficient. 
 
When combined with the RPC service, the IMDS allows the creation of a reflective 
shared embedded database service with a few-dozen additional lines of functional 
programming code. In particular, the server establishes an in-memory database for each 
database service that it hosts. Each database at the server-side is linked to a file so that 
persistence is ensured. When a client connects and invokes the database service, its own 
embedded database is started in a pure in-memory mode and a data load of the data in the 
server’s database for that service is downloaded. In actuality, the remote call service at 
this point takes special advantage of the fact that its communications exist in a slave 
interpreter as well as the ability to define code on-the-fly in an interpreter environment. 
In particular, the server uses the remote call service to set up another, special binary 
connection using the same physical connection for passing and loading the database data 
and structure on the client in low-level, binary form with extreme efficiency. It then 
destroys the special connection on both sides when the loading is complete without 
impacting the remote call service. 
 
An application in which the client interpreter is embedded can now make database calls 
for creating, reading, updating and deleting both data and structure in addition to the 
efficient searching, sorting and selecting that databases are known for. If the call does not 
change the data or structure, then the call is executed by the embedded database locally. 
However if the call would result in a data or structure change, then the underlying remote 
call service, upon which the database service is constructed, passes the database 
command with any arguments to the server where it is first executed by the server’s 
embedded database. The server then uses the same underlying remote call service to 
remotely execute the database command on all of the subscribing clients’ embedded 
databases. By design, the server remotely executes the database command on the 
originating client’s embedded database last. In this very simple way, the client knows that 
when it sees the change, then everyone already sees the same change! 
 
Additionally, the database service provides a special connect/disconnect procedure for 
the underlying remote call service to invoke on connect/disconnect events as part of the 
overall coherency and consistency control at the database service level. When the 
database’s own consistency model is combined with this simple yet effective coherency 
protocol, the resulting concurrency model now addresses the atomicity of data-in-
structure as opposed to mere data. Since the database schema in this case reflects the 
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physical features and nomological interpretation basis, the effective concurrency model 
can be managed at the appropriate battlespace interaction level. 

ApplicationApplication

In-Memory
Database
In-Memory
Database

Shared 
Embedded 
Database

array set/ 
unset call

db set/ 
select

Tcl Interpreter
(Client)

pass {db command} 

to server

Tcl Interpreter
(Server)

forward {d
b command} 

to clients

ApplicationApplication

Shared 
Embedded 
Database

db get/ 
select

Tcl Interpreter
(Client)

array set/ unset 
effect seen

1. First program establishes in-
memory database service through 
the server with possible data.

2. Second program “connects” to the 
server and subscribes to the 
database service, which causes a 
replication of the in-memory 
database data of the first program 
into its own in-memory database.

3. When either program changes data 
in its in-memory database, the 
changes are distributed to the 
other program’s in-memory 
database.

Database file 
on disk.
Database file 
on disk.

 
Figure 11 – Reflective, shared in-memory database system services embedded within the Tcl 
interpreter and running on top of the RPC service enables concurrent sharing of data within the 
context of its database structure. 
 
When the interpreter is embedded within a compiled application, a shared array variable 
between the interpreter and the compiled program can be a very effective data sharing 
metaphor. As an interpreter, Tcl uses late-binding so that variables are untyped and thus 
easy to share. It also has a full runtime state engine with event loops that can be used 
efficiently to trace variable manipulations and procedure executions. In this case, runtime 
variable traces allow the application to directly set/unset array elements while 
automatically propagating these changes to the underlying database service, which in turn 
uses the even deeper-seated remote call service to reflect any changes to the server and 
beyond. This overall reflective, embedded database concept is depicted in Figure 11. 
 
On top of the database services are constructed the nomological abstraction services that 
apply patterns of conjoined events and event sequences to identify instances that translate 
into events and corresponding physical features at appropriate levels of abstraction. For 
such linguistic-inspired translations, the highly efficient internal list, array and string 
processing capabilities of the runtime Tcl environment prove advantageous. Furthermore, 
since all the services are modular, the resulting system becomes a service-of-services 
construct. For example, the database services act essentially as though all data is local. 
The underlying RPC services handles where the call is actually executed. 
 
Finally, the essential nomological and physical feature database queries can be 
generalized if there were a protocol-independent common transactional language as an 
intermediate language for passing both data and meta-data in and out of the physical, 
nomological database (Figure 12).  
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Figure 12 – The source-specific runtime and meta-data translation and nomological database 
transaction components of the data source interaction agent currently in development. 
 
This intermediate language should be lightweight, but able to represent rich-linguistic 
structure; it should be easily machine parsed by C-family languages yet still have a 
human readable form; it should be readily adaptable to the informational content of a 
broad range of runtime/dynamic systems data protocols; and it must be able to handle 
both runtime event information as well as nomological meta-data information. In this 
perspective, JSON (JavaScript Object Notation) makes for a good data interchange 
language candidate currently under investigation. JSON is a standard text format that is 
completely language independent but uses conventions that are familiar to the C-family 
of languages. A particular challenge with the data source interaction agent stems from the 
fact that many data protocols only address or stress the runtime event/state data, which 
leaves the meta-data an unresolved source-specific issue. 
 
Should this new system prove equally successful, the expansion to provide full bi-
directional concurrent operation of dynamic systems can then be explored. If successful, 
this might eventually offer an alternative to the SWEDAT-JIMM architecture currently 
used to concurrently integrate ACETEF activities. 
 
 
5 The Bigger Picture 
 
Service-Oriented Architecture (SOA) is an architectural style that treats business 
functionality as modular, interacting services in an on-demand environment. Because the 
services exist in this imperative environment, SOA adds yet another dimension to 
understanding concurrency. The ACETEF claimants individually represent business 
activities.  
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Figure 13 – A generalized SOA perspective of ACTEF. 
 
These activities are actualized by the concurrent applications that interact through the 
sharing of processes, resources and roles. The concurrency aspect discussed thus far with 
both the SWEDAT/JIMM and the alternative RPC/nomological database approach 
represent application-level middleware. This is the lower side of the concurrent 
environment where the application interactions are “choreographed.” On the higher side 
of the concurrent environment is where the specific configuration of activities 
represented by the applications are “orchestrated” to form customer-level M&S based 
T&E services. This gives rise to the concept of workflow-level middleware of the 
concurrent environment. Figure 13 shows these two middleware perspectives. In an 
overly simplistic manner, this is similar to the distinction between simulation control and 
facility executive. Both perspectives involve the configuration, execution and 
synchronization of processes within the concurrent environment. These two perspectives 
were originally described as programming in-the-small and programming in-the-large 
respectively [DRK76], and today provide the supporting architecture beneath the service 
broker, requestor and discovery notions of the SOA business design pattern and 
distributed business approach. 
 
The bigger SOA picture of ACETEF implies that the application-level middleware of the 
concurrent environment, which has been the primary focus of this paper, be combined 
with the workflow-level middleware of ACETEF’s activities. With products such as 
Starship, TENA is attempting to address these programming-in-the-large services. Within 
ACETEF, the locally developed ARIES facility executive provides complementary 
services at this level as well. ARIES is actually an acronym meaning Automated 
Resources Initialization, Execution & Synchronization, which describes its major 
functions. It was designed around the facility configuration and executive management 
functions necessary to support integrated testing processes, analogous to the I&GTC 
specification of the mid-1990’s [IGT96]. Similar to Window-NT’s Hardware Abstraction 
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Layer (HAL), ARIES created a kind of Systems Abstraction Layer (SAL) by leveraging 
three basic concepts: 

• Network of Workstations (NOW) Concept - A computer is a computer is a 
computer. 

• Macro Parallel Virtual Machine (MPVM) Concept - A process is a software-
based, I/O-bound activity involving initialization, execution and synchronization. 

• Hardware, software, arguments and files can be co-managed as dependencies in 
support of a process concept and create corresponding services – correspondence 
with the major I&GTC functions. 

The business argument behind the ARIES concept is rooted in the concept of capabilities 
management whereby the infrastructure can be commoditized so that greater investment 
of effort can be placed with the activities most directly related to the business product 
development – inversion of the IT investment pyramid (Figure 14) [LB04]. The ARIES 
executive was actually used in the delivered version of the comparative analysis system 
that was described in the previous section to give a “media player” look and feel for 
selecting TACSIT variations by clicking options in a matrix or a drop-down menu and 
running the system with simple start and stop buttons – as on a media player. 

 
Figure 14 – The ARIES facility/test executive services for configuring and running integrated test 
events provides a systems abstraction layer that facilitates an inversion of the IT investment 
pyramid… greater investment at the customer data products level. 
 
Some criticisms of SOA are based on the assumption that SOA is just another term for 
Web Services, which in turn implies the addition of XML parsing and composition 
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overhead, for example. Certainly the concepts explored in this paper demonstrate 
otherwise. In fact, the SOA concept only implies a concurrent environment, of which the 
Web with the browser as a basic interpreter is a highly proliferated point in case. A 
concurrent environment created with interpreters and a basic RPC service is an 
alternative jumping-off point for creating an SOA, just as the alternative perspective 
described in the previous section using Tcl interpreters. Given the highly optimized and 
embeddable nature of the Tcl interpreters, this basic architecture with distributed 
procedure, file and databases services could possibly form a basis for other SOAs or even 
the programming in-the-large perspective of workflow-middleware. In any case, these are 
topics beyond the immediate scope of this paper deserving of possible further 
consideration and exploration. 
 
 
6 Conclusions 
 
When the operating paradigm is “Simulate-Stimulate-Analyze & Fix-Fly,” real-time, 
concurrent computing is going to be the order of the day. The ability to combine 
interoperability with concurrency both defines and distinguishes ACETEF and its 
stakeholders. As new systems are conceived to address modern warfighting doctrine, the 
need for applying this paradigm along the entire life-cycle spectrum from drawing board 
to operational support of these systems puts ACETEF’s capabilities in the spotlight. 
 
ACETEF’s concurrency model is not merely about shared memory, but rather the 
combination of elemental entity data and event transactions, whose interchange fit a 
shared memory model reasonably efficiently, combined with the effective stimulus-
decision-response interaction between the external world and reflected entities in a virtual 
JIMM world. While the learning curve for this approach can be steep, it has successfully 
supported environments with thousands of entities. 
 
Since ACETEF’s original design and implementation, TENA has evolved as a CORBA-
based protocol that is fundamentally able to address concurrency. Despite complaints of 
CORBA’s overhead, a recent Joint Command, Control, Communications, Computers, 
Intelligence, Surveillance, and Reconnaissance (JC4ISR) Interoperability Test and 
Evaluation Capability (InterTEC) exercise that ACETEF participated in demonstrated 
successful execution of environments with hundreds of entities. It is worth noting that the 
alternative approach suggested in this paper represents a degree of complexity that should 
be somewhere between the very simple shared memory and the very complex CORBA. 
As such, it is hoped that it shares the lightweight efficiency of the simple with sufficient 
flexibility of the complex to serve as a broadly applicable and viable middleware for 
concurrent application interaction. While this approach is currently focused on creating a 
common analytical environment for producing integrated data products reflecting the 
entire battlespace scenario, it may eventually be extendable to a full ACETEF 
middleware solution. 
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The Organizational Architecture

The Air Combat Environment Test & Evaluation Facility 
(ACETEF) is a major component of the Naval Air Systems 
Command (NAVAIR) Integrated Battlespace Simulation and 
Test (IBST) Department…
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The ACETEF Concept

ACETEF’s Paradigm - “Simulate-Stimulate-Analyze & Fix-Fly”
ACETEF’s Interoperability - Based on concurrency at a 
functional battlespace level.
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Application Concurrency

Application concurrency implies some degree of…
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Situation » Required Degree of Concurrency

Historically in T&E, the degree of “coherence” could be greatly 
constrained by reducing the range of dynamic interactions and 
focusing more on the SUT’s reaction vice full interaction.
BUT… shift to dynamic control & re-planning OPS driven by 
multi-INT interactions facilitated by multi-mission / multi-INT / 
multi-interconnected platforms significantly ups this ante.
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Traditional ACETEF Architecture

Concurrency has meaning at the functional level - e.g. at battlespace
interactions between the dynamic systems.

Real dynamic systems operate at different levels of detail.
Need  nomologically consistent interpretation/transaction of data & events.

ACETEF uses a semantic-model as a virtual-world, agent-based form 
of middleware.
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Shared Memory Architecture Challenges

Shared memory is both an inter-process communication (IPC) 
method and a simple concurrency model at the low level of 
variable-sharing » Two Basic Challenges

Concurrency at the “variable-passing” level is not the same as battlespace
functional level concurrency – interface logic can be non-trivial.
Distributed dynamic systems means distributed shared memory (DSM) 
infrastructure – can be costly and proprietary.

Current implementation 
employs:

• An interface library with 
a linked base class to 
facilitate the necessary 
interface logic.

• A plug-in architecture to 
facilitate interfacing with 
DIS, HLA and TENA.

• Proprietary DSM 
infrastructure for direct 
interfacing.
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Beyond the DSM Infrastructure…

Off-the-shelf processing speeds and 
network bandwidths have rendered 
message-passing IPCs commonplace 
– especially given their comparative 
ease-of-use and ubiquity.
Efforts have been undertaken to 
replace the DSM IPC with more 
modern message-passing IPCs…
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Beyond the Shared Memory Architecture

The shared memory + 
SWEDAT + environment 
model co-determine 
ACETEF concurrency.
A “new” architecture must…

Provide equivalent nomological
interpreting between the 
dynamic systems.
Address the fact that runtime 
data & control does not alone 
provide the full nomological
relatedness understanding.
Not exclude alternative data 
protocols &  technical 
approaches – given the range 
of possible L-V-C dynamic 
systems.

Runtime data interchange 
protocols and middleware 
technology are necessary 
but not sufficient to ensure 
the desired concurrency.



A “Nomological Interpreter”
Within a Services-Oriented Architecture

Comparative analysis project illustrates potential alternative...
Required runtime insight of kill-chain evolution and commonality of the COTP – the 
what & why in addition to the basic who and where.
Runtime data + a priori metadata combined in a generalized physical 
representation of features within a nomological framework of relatedness.
TCP/IP, Agent-Based, rule-driven runtime abstraction of features provides 
interpreting between levels of abstraction… building the visual data products.
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Choreography of Agent Interactions
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The Conceptual Basis

Focus on solving the enduring information management challenges at 
a functional level…

The dynamic systems “see” their 
relevant level of abstraction in 
the physical feature space…

The enduring aspect of 
the nomological

interpreter concept is the 
functional understanding 

of the information 
management requirement 
– translation, transaction 

& abstraction.

The enduring aspect of 
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The Technical Enabling Environment

RPC infrastructure across easily embedded, high-functioning byte-
code compiling interpreters, e.g. efficient, general-purpose functional 
programming environments (list, array, string processing…).
Distributed, interactive services… reflective variable sharing, reflective 
embedded database sharing, file sharing, efficient transactional object 
notation…

Platform-independent 
middleware services 
necessary to support 
both low- and high-

level information 
processing demands.

Platform-independent 
middleware services 
necessary to support 
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level information 
processing demands.
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Applications at different 
business functional levels.

Ability to Support a Larger SOA Perspective…

Business Services – the end-to-end capabilities perspective of discovering, 
requesting and producing relevant, useful M&S products.
Orchestration Services – initialization, execution, synchronization & 
management of M&S activities.
Choreography Services – concurrent integration of the dynamic systems and 
analytical tools behind the M&S activities.
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Conclusions

These are exciting times!
The “Simulate-Stimulate-Analyze & Fix-Fly” operating paradigm is 
increasingly relevant with emerging systems and warfighting doctrine.
The “immersion in a coherent environment” concurrency model that 
defines and distinguishes ACETEF is a critical capability.
The on-going architectural endeavors to discover alternatives to the 
shared-memory based architecture at ACETEF are providing valuable 
opportunities…

Back-to-Basics look at the enduring information management 
challenges as related to dynamic systems, concurrency and physical 
causality.
Re-thinking of middleware concepts in light of emerging and maturing 
technologies as well as the larger SOA context.

“If you do what you’ve always done, you’ll get what you’ve always gotten.”

-anonymous
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